4219 measured reflections

 $R_{\rm int} = 0.033$

1576 independent reflections

1417 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl (1*H*-pyrrol-2-ylcarbonylamino)acetate

Gui Hong Tang, Dong Dong Li, Xiang Chao Zeng,* Shi Song Dong and Yan Shuang Wang

Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China Correspondence e-mail: xczeng@126.com

Received 4 August 2008; accepted 26 August 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.167; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_8H_{10}N_2O_3$, molecules are linked by N-H···O hydrogen bonds, forming ribbons of centrosymmetric dimers extending along the c axis.

Related literature

For related literature, see: Banwell et al. (2006); Bernstein et al. (1995); Faulkner (2002); Sosa et al. (2002); Zeng (2006); Zeng et al. (2007).

Experimental

Crystal data

$C_8H_{10}N_2O_3$
$M_r = 182.18$
Monoclinic, $P2_1/n$
a = 11.3398 (19) Å
b = 5.0732 (9) Å
c = 16.500 (3) Å
$\beta = 108.060 \ (3)^{\circ}$

```
V = 902.5 (3) Å<sup>3</sup>
Z = 4
Mo K\alpha radiation
\mu = 0.10 \text{ mm}^{-1}
T = 173 (2) K
0.48 \times 0.41 \times 0.21 \text{ mm}
```

Data collection

```
Bruker SMART 1K CCD area-
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1997)
  T_{\min} = 0.952, T_{\max} = 0.979
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	119 parameters
$wR(F^2) = 0.166$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
1576 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Undrogon bond	acomoter	(Å	0)
Hydrogen-bond	geometry	(A,	°)

	IIA	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
0.88	1.93	2.782 (2)	162
0.88	2.09	2.9372 (19)	161
	0.88 0.88	0.88 1.93 0.88 2.09	0.88 1.93 2.782 (2) 0.88 2.09 2.9372 (19)

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2214).

References

- Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.
- Zeng, X.-C. (2006). Acta Cryst. E62, 05505-05507.
- Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, 03424.

supplementary materials

Acta Cryst. (2008). E64, o1867 [doi:10.1107/S1600536808027451]

Methyl (1H-pyrrol-2-ylcarbonylamino)acetate

G. H. Tang, D. D. Li, X. C. Zeng, S. S. Dong and Y. S. Wang

Comment

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002). Some show important bioactivities, such as antitumor activity (Banwell *et al.*, 2006) and protein kinase inhibiting activity (Sosa *et al.*, 2002). This is the reason why they have attracted our interest. This study follows our previous studies on methyl 2-(4,5-dibromo-1*H*-pyrrole-2carboxamido)propionate (Zeng *et al.*, 2007) and 3-bromo-1-methyl-6,7-dihydropyrrolo[2,3-*c*]azepine- 4,8(1*H*,5*H*)-dione (Zeng, 2006).

In the crystal structure, molecules of the title compound are linked through N1—H1···O1ⁱ hydrogen bonds to form centrosymmetric dimers (Fig. 2) of graph-set motif $R_2^2(10)$ (Bernstein *et al.*, 1995), which are linked by N2—H2···O2ⁱⁱ hydrogen bonds, generating ribbons extending along the *c* axis (also shown in Fig. 2). Bond lengths and angles are unexceptional.

Experimental

The hydrochloric acid salt of glycine methyl ester (0.63 g, 5 mmol) and 2-trichloroacetylpyrrole (1.06 g, 5 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 10 h and then poured into water. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in EtOH at room temperature. Light-yellow monoclinic crystals suitable for X-ray analysis (m.p. 420 K, 95.6% yield) grew over a period of one week when the solution was exposed to the air. CH&N elemental analysis. Calc. for $C_8H_{10}N_2O_3$: C 52.74, H 5.53, N 15.38%; found: C 52.78, H 5.59, N 15.49%.

Refinement

H atoms were positioned geometrically [C—H = 0.99Å for CH₂, 0.98Å for CH₃, 0.95Å for CH (aromatic), and N—H = 0.88 Å] and refined using a riding model, with $U_{iso} = 1.2U_{eq}$ (1.5 U_{eq} for the methyl group) of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Ribbons of dimers formed by hydrogen bonds (dashed lines).

Methyl (1H-pyrrol-2-ylcarbonylamino)acetate

$C_8H_{10}N_2O_3$	$D_{\rm x} = 1.341 {\rm ~Mg~m}^{-3}$
$M_r = 182.18$	Melting point: 420 K
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.3398 (19) Å	Cell parameters from 3468 reflections
b = 5.0732 (9) Å	$\theta = 2.6 - 27.0^{\circ}$
c = 16.500 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 108.060 \ (3)^{\circ}$	T = 173 (2) K
$V = 902.5 (3) \text{ Å}^3$	Block, light yellow
Z = 4	$0.48 \times 0.41 \times 0.21 \text{ mm}$
$F_{000} = 384$	

Data collection

Bruker SMART 1K CCD area-detector diffractometer	1576 independent reflections
Radiation source: fine-focus sealed tube	1417 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 173(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -13 \rightarrow 13$
$T_{\min} = 0.952, \ T_{\max} = 0.979$	$k = -6 \rightarrow 5$
4219 measured reflections	$l = -16 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.166$	$w = 1/[\sigma^2(F_0^2) + (0.1092P)^2 + 0.2414P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.001$
1576 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
119 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.89632 (13)	0.2572 (2)	0.45357 (8)	0.0387 (4)
O2	0.63332 (13)	0.2895 (3)	0.31013 (8)	0.0391 (4)
N2	0.85781 (14)	0.5697 (3)	0.35256 (9)	0.0343 (4)
H2	0.8777	0.6472	0.3109	0.041*
O3	0.58657 (13)	0.4945 (3)	0.41547 (9)	0.0513 (5)
C3	1.06971 (17)	0.3350 (4)	0.29921 (12)	0.0364 (5)
Н3	1.0414	0.4778	0.2608	0.044*
N1	1.08932 (14)	0.0465 (3)	0.40331 (10)	0.0343 (4)
H1	1.0773	-0.0386	0.4466	0.041*
C5	0.92253 (15)	0.3607 (3)	0.39334 (10)	0.0306 (5)
C6	0.75496 (17)	0.6645 (3)	0.37859 (12)	0.0352 (5)
H6A	0.7211	0.8266	0.3464	0.042*
H6B	0.7847	0.7099	0.4400	0.042*
C7	0.65395 (17)	0.4608 (3)	0.36324 (11)	0.0329 (5)
C4	1.02305 (17)	0.2601 (3)	0.36367 (11)	0.0313 (5)
C1	1.17634 (18)	-0.0142 (4)	0.36582 (13)	0.0394 (5)
H1A	1.2344	-0.1546	0.3817	0.047*
C2	1.16634 (18)	0.1618 (4)	0.30085 (13)	0.0413 (5)
H2A	1.2159	0.1652	0.2638	0.050*
C8	0.4845 (3)	0.3088 (6)	0.40341 (18)	0.0720 (9)
H8A	0.4282	0.3231	0.3450	0.108*
H8B	0.4391	0.3494	0.4437	0.108*
H8C	0.5174	0.1290	0.4135	0.108*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0451 (8)	0.0384 (8)	0.0386 (8)	0.0040 (6)	0.0217 (6)	0.0103 (5)
02	0.0448 (8)	0.0368 (7)	0.0392 (8)	-0.0018 (6)	0.0180 (6)	-0.0094 (6)
N2	0.0403 (9)	0.0297 (8)	0.0388 (9)	0.0010 (6)	0.0207 (7)	0.0065 (6)
O3	0.0508 (9)	0.0644 (10)	0.0499 (9)	-0.0184 (7)	0.0319 (8)	-0.0247 (7)
C3	0.0388 (10)	0.0350 (10)	0.0387 (10)	-0.0025 (8)	0.0166 (8)	0.0063 (8)
N1	0.0376 (9)	0.0304 (8)	0.0385 (9)	-0.0018 (6)	0.0170 (7)	0.0044 (6)
C5	0.0330 (9)	0.0288 (10)	0.0315 (9)	-0.0055 (7)	0.0120 (8)	0.0008 (7)
C6	0.0423 (11)	0.0274 (9)	0.0394 (10)	0.0022 (7)	0.0178 (8)	-0.0003 (7)
C7	0.0383 (10)	0.0322 (9)	0.0304 (9)	0.0046 (7)	0.0141 (8)	-0.0008 (7)
C4	0.0341 (9)	0.0270 (9)	0.0337 (10)	-0.0042 (7)	0.0119 (8)	0.0006 (7)
C1	0.0368 (10)	0.0345 (10)	0.0502 (12)	0.0011 (8)	0.0184 (9)	0.0004 (8)
C2	0.0416 (11)	0.0416 (11)	0.0492 (12)	-0.0029 (8)	0.0265 (9)	0.0022 (9)
C8	0.0677 (16)	0.097 (2)	0.0690 (16)	-0.0400 (15)	0.0468 (14)	-0.0364 (15)
Geometric pa	rameters (Å, °)					
01—C5		1.239 (2)	N1—	H1	0.8	80
O2—C7		1.204 (2)	С5—	C4	1.4	65 (2)
N2—C5		1.345 (2)	С6—	C7	1.5	05 (3)
N2—C6		1.444 (2)	C6—	H6A	0.9	90
N2—H2		0.880	C6—	H6B	0.9	90
O3—C7		1.328 (2)	C1—	C2	1.3	73 (3)
O3—C8		1.458 (3)	C1—	H1A	0.9	50
C3—C4		1.380 (2)	C2—	H2A	0.9	50
С3—С2		1.398 (3)	C8—	H8A	0.9	80
С3—Н3		0.950	C8—	H8B	0.9	80
N1—C1		1.353 (2)	C8—	H8C	0.9	80
N1—C4		1.365 (2)				
C5—N2—C6		118.64 (14)	02—	C7—O3	122	.96 (17)
C5—N2—H2		120.7	02—	С7—С6	125	5.73 (17)
C6—N2—H2		120.7	03—	С7—С6	111	.30 (15)
С7—О3—С8		114.87 (16)	N1—	C4—C3	107	7.59 (16)
C4—C3—C2		107.31 (17)	N1—	C4—C5	119	.11 (15)
С4—С3—Н3		126.3	С3—	C4—C5	133	.30 (17)
С2—С3—Н3		126.3	N1—	C1—C2	108	3.28 (17)
C1—N1—C4		109.46 (15)	N1—	C1—H1A	125	.9
C1—N1—H1		125.3	C2—	C1—H1A	125	.9
C4—N1—H1		125.3	C1—	C2—C3	107	.37 (17)
01—C5—N2		120.38 (16)	C1—	C2—H2A	126	5.3
01—C5—C4		121.72 (16)	С3—	C2—H2A	126	5.3
N2—C5—C4		117.89 (14)	03—	C8—H8A	109	0.5
N2—C6—C7		111.34 (14)	03—	C8—H8B	109	0.5
N2—C6—H6A	A	109.4	H8A-		109	0.5
С7—С6—Н6А	A	109.4	03—	C8—H8C	109	0.5

supplementary materials

N2—C6—H6B	109.4	Н8А—С8—Н8С	109.5
С7—С6—Н6В	109.4	H8B—C8—H8C	109.5
H6A—C6—H6B	108.0		
C6—N2—C5—O1	-2.1 (2)	C2—C3—C4—N1	-0.2 (2)
C6—N2—C5—C4	177.39 (15)	C2—C3—C4—C5	-179.42 (19)
C5—N2—C6—C7	-63.6 (2)	O1—C5—C4—N1	0.2 (3)
C8—O3—C7—O2	-0.4 (3)	N2-C5-C4-N1	-179.30 (14)
C8—O3—C7—C6	178.56 (19)	O1—C5—C4—C3	179.36 (19)
N2—C6—C7—O2	-26.5 (3)	N2C5C4C3	-0.1 (3)
N2—C6—C7—O3	154.55 (16)	C4—N1—C1—C2	-0.1 (2)
C1—N1—C4—C3	0.2 (2)	N1—C1—C2—C3	0.0 (2)
C1—N1—C4—C5	179.57 (16)	C4—C3—C2—C1	0.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1···O1 ⁱ	0.88	1.93	2.782 (2)	162
N2—H2···O2 ⁱⁱ	0.88	2.09	2.9372 (19)	161
Symmetry codes: (i) $-x+2$, $-y$, $-z+1$; (ii) $-x+3/2$, $y+1/2$, $-z+1/2$.				

